Lipid-protein interactions as determinants of membrane protein structure and function.

نویسندگان

  • William Dowhan
  • Mikhail Bogdanov
چکیده

To determine how the lipid environment affects membrane protein structure and function, strains of Escherichia coli were developed in which normal phospholipid composition can be altered or foreign lipids can be introduced. The properties of LacY (lactose permease) were investigated as a function of lipid environment. Assembly of LacY in membranes lacking PE (phosphatidylethanolamine) results in misorientation of the N-terminal six-TM (transmembrane domain) helical bundle with loss of energy-dependent uphill transport and retention of energy-independent downhill transport. Post-assembly introduction of PE results in nearly native orientation of TMs and restoration of uphill transport. Foreign lipids with no net charge can substitute for PE in supporting native LacY topology, but restoration of uphill transport is dependent on native topology and the proper folding of a solvent-exposed domain. Increasing the positive charge density of the cytoplasmically exposed surface of LacY counters TM misorientation in the absence of neutral lipids, demonstrating that charge interactions between these domains and the surface of the membrane bilayer are determinants of TM orientation. Therefore membrane protein organization or reorganization is determined either during initial assembly or post-insertionally through direct interactions between the protein and the lipid environment, which affects the topogenic potency of opposing charged residues as topological signals independent of the translocon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Response of Fenugreek plants to short-term salinity stress in relation to lipid peroxidation, antioxidant activity and protein content

To investigate the effect of salinity stress on membrane stability index, membrane lipid peroxidation, catalase activity and protein content of Fenugreek (Trigonellafoenum) an experiment with five levels of short-term salinity stress (0, 50, 100, 150 and 200 mM) was carried out at the laboratory of agriculture faculty of Shahid Bahonar University of Kerman, Iran. The treatments were ar...

متن کامل

Fouling mechanisms during protein microfiltration: The effects of protein structure and filtration pressure on polypropylene microporous membrane performance

A polypropylene microporous membrane (PPMM) was fabricated by thermally induced phase separation (TIPS) method. The effects of protein size and structure as well as filtration pressure on the membrane performance and fouling mechanisms were investigated using two different proteins, bovine serum albumin (BSA) and collagen, in dead-end filtration setup. Obtained results showed that, for each pro...

متن کامل

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Computer Aided Molecular Modeling Of Membrane Metalloprotease

Molecular modeling is a set of computational techniques for construction of 3D structure of a protein especially membrane bound proteins whose structures can not be elucidated using experimental techniques. These techniques has been applied in the study of membrane metalloproteases for comparing wild and mutated enzymes, docking inhibitors in the catalytic site and examination of binding pocket...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 39 3  شماره 

صفحات  -

تاریخ انتشار 2011